If it's not what You are looking for type in the equation solver your own equation and let us solve it.
900+x^2=5625
We move all terms to the left:
900+x^2-(5625)=0
We add all the numbers together, and all the variables
x^2-4725=0
a = 1; b = 0; c = -4725;
Δ = b2-4ac
Δ = 02-4·1·(-4725)
Δ = 18900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18900}=\sqrt{900*21}=\sqrt{900}*\sqrt{21}=30\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-30\sqrt{21}}{2*1}=\frac{0-30\sqrt{21}}{2} =-\frac{30\sqrt{21}}{2} =-15\sqrt{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+30\sqrt{21}}{2*1}=\frac{0+30\sqrt{21}}{2} =\frac{30\sqrt{21}}{2} =15\sqrt{21} $
| 61x+61=732 | | q2=400 | | 144=h2 | | j+5=16 | | 64=z2 | | 0=–8y+8y | | 9=u2 | | x/9=12/54 | | 0.07(x+2,000)=3,500 | | 121=m2 | | 4(x-0.6)=4 | | 0.15(x+2,000)=7,650 | | -6p=90 | | 49=y2 | | 7(g−9)+12=16 | | -6p=80 | | 64=g2 | | -21=v-2 | | 6t+5=3(t+2) | | 11x+300=360 | | 6t+5=3(2+2) | | 9x+300=360 | | 15+7f=12f | | 9x-300=360 | | 2x+2x=11x | | 33+23y-(38y-27y)=129 | | 2(u+8)=4u+24 | | f-12=0 | | 8-2t=-142 | | 9x+4+13x-16=90 | | 12.5·n=32 | | 7x-12=3x=8 |